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Abstract: In today’s era dominated by software applications and smart systems, our daily activities increasingly rely
on various smart applications, including shopping apps, e-commerce, web, and social media applications. As these
applications and systems grow, so does the challenge of monitoring and maintaining their 24/7 operation, posing a
significant task for online service providers. Logs, key tools for recording system runtime information, are crucial in
managing web services. However, as systems and applications become more complex, manual review of log records
becomes time-consuming and impractical. The development of automated log analysis tools has recently garnered
significant attention from researchers in the academic and industrial sectors. These tools are pivotal in several down-
stream tasks, such as anomaly detection, failure prediction, and system diagnosis. The primary step in log analysis
is log parsing, which involves transforming unstructured log messages into structured data for subsequent mining
tasks. To date, over 30 log parsing tools have been developed. This paper focuses on an empirical study of fifteen log
parsing tools, chosen for their public availability of source code and proven high accuracy and efficiency in prior
research. The study was conducted using seven real datasets collected from servers at the National Agency for Net-
work Services (NANS) at the Ministry of Communications and Technology in Syria, including an Apache web server,
Linux Mail server, WHMCS (Web Hosting Billing & Automation Platform), Microsoft web server IIS (Microsoft In-
ternet Information Services 10.0), Plesk (Web Hosting Control Panel), and a Cisco ASA 5512 Firewall device. A com-
parative analysis of these tools in terms of accuracy, efficiency, and scalability was performed to assist system ad-
ministrators in selecting the most suitable log-parsing tool for their analysis tasks. The study finds that Drain demon-
strates the best performance in these aspects. Our contributions provide a strong link between research and industry

log parsing, consolidating past research efforts and facilitating future advancements.
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Introduction
Over the past decade, data centres and computer networks have seen dramatic growth in processing power and size,

handling vast amounts of log data daily. In cases of service interruption or failure, system administrators are required
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to manually review logs to identify faults, a process that is time-consuming and dependent on their expertise. Given
the critical importance of maintaining uninterrupted national data centre services, the implementation of tools for
monitoring and analyzing log records is imperative. Any server malfunction can lead to significant damage. A study
by the Ponemon Institute, sponsored by Emerson Network Power, highlights the escalating costs of data centre
downtime. The study reports that the average cost of an unplanned data centre outage in the US has risen to over
US$7,900 per minute, a 41% increase from US$5,600 in 2010, underscoring the economic impact of such outages.

In recent decades, modern software such as search engines, instant messaging apps, and cloud systems, has become
increasingly integrated into our daily lives and indispensable. Most of these software systems are expected to be
available 24/7, as any significant downtime can lead to substantial revenue loss, especially in large-scale distributed
systems (1).

For distributed systems like electronic payment applications, commercial applications, and cloud systems, malfunctions,
ranging from server outages to slow responses or incorrect results, can result in user dissatisfaction, loss of confidence,
and significant revenue losses. This is particularly critical given the presence of competitors offering similar services
with varying quality and availability.

Identifying the source of system malfunctions is challenging due to a range of potential causes, including network errors,
physical server malfunctions, software system errors, or, in the worst case, hacking and malicious activities. Log files,
which record system run-time information, are the primary data source for mitigating the negative effects of system
failures or predicting anomalies.

Logs are semi-structured texts generated by logging statements in software source code, added by developers during
system or application development. Systems record log messages for monitoring malfunctions, identifying errors, and
system maintenance. However, manually reviewing logs is often a futile and time-consuming task due to several
reasons: (1) the size and complexity of modern systems result in an ever-increasing volume of log records, demanding
extensive review time; (2) systems developed collaboratively or using third-party tools may generate logs that are
inaccessible or unfamiliar to developers and system engineers; and (3) logs, which reflect developer-specific logging
instructions, often require domain-specific knowledge, making them difficult for system engineers to interpret. These
challenges highlight the need for automated and efficient log parsing solutions to streamline log analysis and reduce
manual effort.

Therefore, the development of automated tools for analyzing and extracting useful information from log records has
become crucial to ensure the continued availability and quality of services.

Automated log mining tools employ statistical, data analysis, machine learning, and deep learning techniques to
automate log analysis tasks. These tools typically require structured data, whereas log records are semi-structured due
to their free-text style. Addressing the semi-structured nature of log messages has attracted significant attention from
researchers in academic and industrial fields, leading to the development of up to 30 log parsing tools (1) (2). The
objective of log parsing is to transform semi-structured log records into structured data, resulting in a set of record
templates and parameters.

A log message generally comprises a header and message content. The header usually contains basic information such
as timestamps, the generating component, IP addresses, and the message’s severity level (info, warning, error, etc.).
Thanks to the commonality of header contents, it can be easily distinguished and extracted using regular expressions.
The content of the log message is divided into two main parts:

o The fixed part, which is the constant text written by developers within the source code’s print statement
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remains unchanged in each log repetition.

The variable part that reflects the system’s state during runtime and varies from one message to another.

Oct 05 10:13:14 * * * * :0ct ©4 10:25:53 EEST: %ASA-session-6-305011: Built dynamic UDP
translation from PKI_Public:*.* . * */46905 to Outside:*.*.* */17481

Oct ©5 10:13:14 *.* % * :0ct @4 10:25:53 EEST: %ASA-session-6-3020815: Built outbound UDP
connection 160979231 for Outside:*.*.* */53 (*,* * */53) to PKI_Public:*.*.*, */46905
(*.*.%,%/17481)

Oct ©5 10:13:14 * * * * :0ct ©4 10:25:53 EEST: %ASA-session-6-302020: Built inbound ICMP
connection for faddr *.*.* */1482 gaddr *.*.*.*/@ laddr *.*.*. */@

Oct ©5 10:13:14 *.*.,* * :0ct ©4 10:25:53 EEST: %ASA-session-6-302821: Teardown ICMP
connection for faddr *.*.* . */1482 gaddr *.*.*.*/@ laddr *.*.*.*/0@

Oct @5 10:13:14 *,* * * :0ct ©4 10:25:53 EEST: %ASA-session-6-302020: Built inbound ICMP
connection for faddr *.*.*.*¥/1482 gaddr *.*.*.*/@ laddr *.*.*.*/0@

Oct ©5 10:13:14 *,* * * :0ct 04 10:25:53 EEST: %ASA-session-6-302021: Teardown ICMP
connection for faddr *.*.*.*¥/1482 gaddr *.*.*.*/@ laddr *.*.*.*/0@

Oct @5 19:13:14 * * * * :0ct @4 10:25:53 EEST: %ASA-session-4-106023: Deny tcp src
Outside:*.*.*,*/40981 dst Outside:*.*.*.*/8888 by access-group "Outside_access" [©x@,
oxe]

Fig. 1: Log messages

Month  Day Time TimeZone Componer Content EventTemplate ParameterList

Oct 4 10:25:53 EEST %ASA-sess Built dynamic UDP trans Built dynamic <*> translation from < ['UDP", 'PKI_Public:*/46905', 'Outside:*/17481']

Oct 4 10:25:53 EEST %ASA-sess Built outbound UDP coni Built outbound UDP connection <*> ['160979231, 'Outside:8.8.8.8/53 (8.8.8.8/53)", 'PKI_Public:*/469
Oct 4 10:25:53 EEST %MASA-sess Built inbound ICMP conr Built <*> ICMP connection for faddr ['inbound’, '*/1482', '*/0', '*/0']

Oct 4 10:25:53 EEST %ASA-sess Teardown ICMP connect Teardown ICMP connection for fadd['*/1482', '*/0', '*/0']

Oct 4 10:25:53 EEST %ASA-sess Built inbound ICMP conr Built <*> ICMP connection for faddr ['inbound’, '*/1482', '*/0', '*/0']

Fig.2: Structured log

For instance, in the first log message in Figure 1, the header (e.g., 'Oct 04 10:25:53 EEST %ASA-session-6-305011") can be
readily identified through regular expressions. The log message consists of a template 'Built dynamic <*> translation
from <*>to <*>' and the parameter list is '['UDP"', PKI_Public:ip_add/46905', 'Outside:ip_add/17481']' as shown in Figure

2.

Automated Log Analysis

For better comprehension of the log parsing step, it is worth noting that the entire automated log analysis process, as

shown in Figure 3, primarily involves the following steps (1):

Logging: It is the first step, where the developers add the print statements to the system or application source
code which will generate the log messages later during the system runtime. In the logging step, developers
must consider three main questions: where to log, what to log, and how to log.

Log Compression: Log compression is a technique used to reduce the size of log files generated by distributed
systems. These log files can be very large, often reaching several gigabytes per day, which poses a challenge for
service providers to provide sufficient storage space. There are several approaches to log compression,
including bucket-based compression, dictionary-based compression, and statistics-based compressors.

Log Parsing: Converts semi-structured log data to structured data, making it compatible with log analysis tools.
Structured data allows for efficient search, filtering, grouping, counting, and mining of logs.

Log Mining: Refers to the process of analyzing large volumes of log data to extract meaningful patterns and
trends. This is done through the use of statistical methods, data mining techniques, and machine learning
algorithms. By analyzing log data, it is possible to gain valuable insights that can be used to guide and improve

the monitoring, administration, and troubleshooting of software systems.
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Fig.3: An overall framework for automated log analysis.
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Fig. 4: Offline log parser working flow.

Log Parsing Applications
Usage analysis is crucial during software development and maintenance to understand how users interact with a system,
and log parsing plays a key role in enabling this. Anomaly detection has also become an essential part of system
monitoring and maintenance tasks, with various techniques being employed. For instance, SwissLog (6) presents a
robust and unified anomaly detection model for diverse faults, including sequential log anomalies and performance
issues, using deep learning. Similarly, in (7), Tan et al. developed a deep learning (DL)-based log anomaly detection
framework for 5G CN, which encompasses log parsing, log grouping, feature extraction, and model training, with each
module designed for distinct functionalities to enable combinational usage in various situations. On the other hand,
transfer learning has been used for anomaly detection, as seen in (8), where log parsing serves as a necessary data
preprocessing step.
Frequently, system issues such as disk errors or network disconnections can occur repeatedly or be reported multiple
times by different users, leading to many duplicate issues. Automatically identifying these duplicates is essential to
reduce the workload of developers and support engineers (2). Additionally, extracting all possible event templates from
logs is a critical step before constructing a performance model, which takes event sequences as inputs (2). Diagnosing
failures manually is challenging and time-consuming due to the large, verbose, and unstructured nature of logs, making
log parsing a necessary step (2).
Log Parsers Working Mode
Log parsers can be categorized into three modes of operation: offline, online, and hybrid.
e Offline Mode: Offline log parsers process the log messages in batches where the historical log data should be
loaded into the memory, refer to Figure 4. Early log parsers such as SLCT (16), LKE (17), LogMine (18), and
IPLoM (19) operate in this mode. Offline parsing allows log parsers to scan all the messages and parse the logs
with a global view. However, offline log parsers are not suitable for real-time log analytics, making them less
effective for hyper-scale distributed systems.
e Online Mode: Online log parsers operate in real-time on log streams, as shown in Figure 5. Examples of such
parsers include Spell (20), Drain (21), and SHISO (22). These parsers are advantageous over offline solutions in

two ways.
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Fig.5: Online log parser working flow.
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Fig. 6: Hybrid log parser working flow.

Firstly, they can analyze newly collected logs on the fly and incrementally refine their parsing results without
requiring offline training. This makes them ideal for real-time tasks like system monitoring and fault diagnosis.
Secondly, online parsers do not require loading the entire input data into memory, making them more
accessible to users with limited resources.

e Hybrid Mode: Hybrid log parsers, such as NuLog (23) and LogParse (24), work in both an offline training phase
and an online parsing phase. These parsers are trained offline to populate the model parameters and then parse
input logs in an online mode. By combining the advantages of offline and online approaches, hybrid log parsers
can better learn log characteristics from different sources. Refer to Figure 6 for a visual representation.

Scope

In this study, we have applied fifteen different log parsers to our dataset for several reasons. Firstly, log formats can
vary significantly, and a single parser might not be effective in handling all the variations present in the NANS Agency’s
log data. Secondly, different parsers might have strengths and weaknesses in terms of accuracy, efficiency, and handling
specific log structures. By applying multiple parsers, we aimed to obtain a comprehensive evaluation of parsing
effectiveness for the NANS Agency’s log data.

We applied these fifteen parsers to seven real datasets sourced from the NANS servers. This work underscores the
significance of the log parsing process and how the accuracy of its results impacts the subsequent stages of log analysis

(10) (11). The chosen tools are open-source with publicly available codes and were selected for their high accuracy based
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on prior evaluations (2) (34). These tools are AEL (29), Brain (35), Drain (21), IPLoM (31), LenMa (28), LFA (25), LKE
(17), LogSig (27), LogMine (18), LogCluster (26), LogPPT(33), MoLFI (36), SHISO (22), Spell (20) and USTEP (37).
Motivation
Despite the extensive study of log parsing in recent years, there remains a lack of awareness among users about the
distinct advantages and impacts of various log parsers on subsequent log mining tasks. This gap often leads to
unnecessary reimplementation or redesign of log parsers, a process that is not only time-consuming but also redundant.
To bridge this gap, this paper examines fifteen log parsers and packages them into a toolkit to facilitate their reuse.
Paper Structure
The following is the organization of the paper. In Section 2, we will review the current state-of-the-art log parsing tools.
We will highlight the limitations of the existing tools, as well as the characteristics of a good parser. Section 3 will
describe the study methodology, the design, and the log parsers that we have selected to apply. Section 4 will report
on the experimental setup and evaluation results. Finally, in Section 5, we will conclude the paper.

Literature Review
Log data is essential for system monitoring and management. Log parsing transforms raw log data into structured
information, enabling businesses to communicate, govern, and make decisions based on data [38]. Effective log parsing
reduces complexity, improves understanding, and provides insights into system behaviour, facilitating better resource
allocation and operational management.
Existing Log Parsing Tools
The field of log parsing has seen the development of various tools, each with unique approaches to improving accuracy
and efficiency. LLMParser (39) is a framework that leverages large language models (LLMs) for log parsing. It employs
in-context learning and an adaptive parsing cache to enhance accuracy and efficiency, with three LLMs (ChatGPT,
Davinci, and Curie) tested for performance. Another study (40) explores the potential of ChatGPT for log parsing,
highlighting its promise with appropriate prompts but also noting challenges such as handling log-specific data and
designing effective prompts. LogDiv (41) utilizes GPT-3 for in-context learning, selecting diverse log samples to
generate precise log templates without the need for model tuning. AdaptParse (42) approaches log parsing by
transforming the template generation problem into a word classification task. It uses semantic patterns and an attention
network to distinguish between template words and variable words, improving parsing accuracy. DA-Parser (43)
introduces a domain-aware head to identify the source domains of logs, effectively transforming multi-domain parsing
into a series of single-domain parsing problems. This allows for more effective log parsing across diverse domains.
LogSlaw (38) is an online log parsing algorithm that clusters logs based on improved Jaccard Similarity, making it
suitable for heterogeneous logs with large datasets. PatCluster (44) is an offline parsing method that uses frequent
words to refine log templates, improving parsing accuracy for complex log structures. Documentation-based
Semantic-Aware Log Parsing (45) is an innovative approach that leverages software documentation to enhance parsing
accuracy, even when source code access is unavailable. Logram (46) uses n-gram dictionaries for efficient log parsing,
making it suitable for streaming scenarios where logs are continuously generated. UniParser (32) transforms log parsing
into a token classification problem, using token and context encoders to discern patterns in log messages. Prefix-Graph
(49) is an online parsing technique that merges prefix trees with probabilistic graphs, offering versatility in handling
diverse log formats. LogParse (24) supports incremental template learning by classifying words into template or
variable categories, enabling real-time log matching and new template learning. Finally, NuLog (23) operates in both
offline and online modes, using self-supervised learning to extract log templates and embedding vectors for efficient
log parsing.
Limitations of Current Log Parsing Tools
Limitations of current log parsing tools have been extensively documented in the literature [41, 33, 50, 35, 32, 38, 9].

These limitations include: (1) reliance on manual features, where parsers depend on human-crafted rules, limiting their
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adaptability; (2) suboptimal deep learning approaches, as deep learning models require extensive training and often
struggle with unseen log formats; (3) limited robustness, with parsers frequently failing to handle unexpected log
structures and lacking semantic understanding; (4) difficulties with variable-length logs, as parsers struggle to process
messages of varying lengths, often requiring multiple templates; (5) limited adaptability, where parsers need retraining
for new software versions and face challenges with large datasets or evolving log formats; and (6) incomplete evaluation,
as many methods lack thorough and comprehensive evaluation, hindering their real-world effectiveness. These issues
collectively highlight the need for more advanced and flexible log parsing solutions.

Key Characteristics for Efficiency and Adaptability

Effective log parsers should possess key characteristics to ensure efficiency and adaptability. These include: **no-
supervision**, enabling operation without prior knowledge or human input; **heterogeneity**, allowing the handling
of logs from diverse applications and systems; **efficiency**, ensuring the ability to process logs faster than their
generation rate; and **scalability**, enabling the management of large-scale log data without performance bottlenecks.
These properties are essential for developing robust and versatile log parsing tools capable of meeting the demands of
modern systems.

The field of log parsing has seen significant advancements, but challenges remain, including the need for automation,
industrial adoption, comprehensive evaluation, and standardized datasets. Addressing these issues is crucial for

developing robust and widely applicable log parsing solutions.

Research Methodology
Research Design
The study aims to answer three research questions:

e RQ1: What are the most effective log parsing tools for NANS, considering their specific logs and needs?

e RQ2: How can existing log parsing tools be adapted or improved to better serve the agency’s log mining
requirements?

e RQ3: What are the strengths, weaknesses, and underlying principles of the existing log parsing tools?

To address these questions, fifteen log parsing tools were selected based on the following criteria:

e Open-source and publicly available: The tools are open-source, allowing for cost-effective implementation
and future customization.

e Previous evaluations on public datasets: The tools have been evaluated in prior studies, but their performance
on NANS’s private dataset needs to be assessed.

e High accuracy in previous studies: Most tools have demonstrated high accuracy in prior evaluations, though
this study will use a broader range of metrics (e.g., Group Accuracy, Message Level Accuracy, Template
Accuracy, F1 Score, Robustness, and Efficiency).

e Python implementation: The tools are implemented in Python, aligning with NANS’s existing infrastructure.

Data Collection

Log data was collected from six servers within the National Data Center at NANS, including a Linux mail server,
Apache web server, WHMCS, Microsoft IIS, Plesk, and Cisco ASA 5512 Firewall. A central Syslog server was deployed
to aggregate logs from these servers, ensuring comprehensive coverage while adhering to privacy policies. The Syslog
protocol was used to collect and store log messages, which include timestamps, severity levels, and event details.
Figures 7 and 8 illustrate the Syslog protocol and sample configuration entries, respectively. To summarize the available
datasets under the study, refer to Table 1.
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Fig.7: Syslog Server.

Oct @5 ©9:81:34 local Listening for Syslog messages on IP address: *.% % #
Oct @5 ©9:81:34 local Listening for Syslog messages on IP address: *.* * #
Oct 85 ©9:081:34 local Listening for Syslog messages on IP address: *,%,*.%
Oct @5 ©9:81:34 local Listening for Syslog messages on IP address: *.* % #
Oct @5 ©9:81:34 local Listening for Syslog messages on IP address: *.* * #
Oct 85 ©9:081:34 local Listening for Syslog messages on IP address: *,%,*.%
Oct @5 ©9:81:34 local Listening for Syslog messages on IP address: *.* * #*

Fig. 8: Sample configuration entries

To evaluate the accuracy of the applied log parsing algorithmes, it is required to have the ground truth dataset. In the
context of log parsing, the ground truth dataset refers to a dataset that is manually annotated or labelled with the correct
parsing information, event templates and variables. This dataset serves as a reference or benchmark against which the
performance of log parsing algorithms or techniques can be evaluated. It allows us to assess the accuracy, precision,
recall, and other performance metrics of the log parsing algorithms. Creating a ground truth dataset is a time-consuming
process, as it requires human expertise to annotate the logs accurately. The ground truth datasets for this study have
been created manually by the operators in NANS. Each dataset contains 2,000 manually labelled log messages. This is
one of the good points of this study, as all of the applied tools were applied and evaluated on publicly available datasets
provided by Loghub with their ground truth datasets.

Data Preprocessing

The collected log data required preprocessing to match the input format expected by the log parsing tools. Python was
used to clean the datasets, removing unwanted symbols and aligning them with the required log formats. Table 2
summarizes the log formats for each dataset. Preprocessing ensured that the datasets were ready for parsing, despite
their initial heterogeneity.

Log Parsers Overview

At a high level, log parsing algorithms can be divided into two main categories syntax-based and semantically-based.
Syntax-based algorithms rely on the structure and format of log messages and involve defining a set of rules or patterns
that describe the expected syntax of log entries. Semantically-based log parsing, on the other hand, focuses on
understanding the meaning or semantics of log entries. This approach aims to extract higher-level information about
the events and activities described in the logs. Fifteen log parsing algorithms were selected for this study, categorized

into syntax-based and semantic-based approaches.
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Table.1: Log Dataset Information.

Dataset Description Data Size #Messages 2k # Templates
Apache Apache server log 77 MB 338,166 26
Linux mail server
Mail Server 21.5MB 179,703 236
info log
Linux mail server
Mail Server EW 600 KB 4,210 16
error and warning log
Cisco ASA 5512
Firewall 31 MB 162,730 15
tirewall log
Web hosting billing
WHMCS and automation 11 MB 34,913 67
platform
Web hosting control
Plesk 2.488 MB 8,345 71
panel

Internet Information
IIS 905 KB 5,263 21
Services (Microsoft)

Table.2: Datasets Log Format.

Dataset Log Format
Apache <RemoteHost> <RemoteUser> <AuthUser> <Datetime> <Timezone> <Content>
Mail Server <Month> <Day> <Time> <Host> <Service> <QueuelD> <Content>

Mail Server EW | <Month> <Day> <Time> <Host> <Service> <SeverityLevel> <Content>

Firewall <Month> <Day> <Time> <TimeZone> <Component> <Content>
1S <Date> <Time> <S_IP> <Content>

Plesk <IP> <User> <Date> <Time> <Content>

WHMCS <IP> <User> <Date> <Time> <Content>

Syntax-Based:

USTEP (37) uses an evolving tree structure to handle dynamic log messages. It adapts to new log formats by updating
its tree structure, making it suitable for environments with evolving log data. MoLFI (36) employs a multi-objective
approach to identify log message formats, ensuring the high frequency and specificity of the generated templates. Drain
(21) is an online log parsing method that uses a fixed-depth tree structure. It preprocesses log messages, searches for
log groups based on message length and token similarity, and updates the parse tree dynamically. Spell (20) is designed
for real-time parsing of streaming log data, leveraging the Longest Common Subsequence (LCS) algorithm to identify
patterns. LogMine (18) handles heterogeneous log messages by generating a hierarchical structure of patterns,
minimizing computational overhead. LenMa (28) groups log messages based on word length similarity using
hierarchical clustering. LogCluster (51) clusters logs to identify problems, using a knowledge base to reduce redundant
effort. SHISO (22) incrementally mines log formats by constructing a hierarchical tree structure, reducing the need for
manual analysis. LogSig (27) generates system events from textual logs by categorizing messages into event types using
message signatures. LFA (25) separates static and variable parts of log lines using clustering algorithms, identifying
recurring event types. IPLoM (31) iteratively partitions log messages to identify line formats, improving clustering

accuracy. LKE (17) combines clustering algorithms and heuristic rules to generate log templates, refining clusters for
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granular insights. AEL (29) abstracts log lines into execution events by anonymizing dynamic parts, tokenizing log lines,
and categorizing them into groups.

Semantic-Based:

LogPPT (33) transforms log parsing into a parameter recognition problem, using a pre-trained language model to
predict parameter positions in log messages. It employs few-shot learning, requiring only a small set of labelled log

messages for training, and leverages semantic information for more accurate parsing.

Evaluation
We evaluate fifteen log parsers in six key areas crucial for real-world applications to answer the research questions, the
experimental setup and the algorithms’ parameters will be covered, and the choice of the accuracy metrics will be
explained in detail. The evaluation criteria used are message level accuracy, robustness, efficiency, group accuracy, edit
distance, and template accuracy. By analyzing these six key areas, this study provides a comprehensive insight into the
strengths and weaknesses of different log parsers, aiding in selecting the most suitable tool that best aligns with NANS-
specific logs and needs. Furthermore, this evaluation can reveal potential weaknesses in specific parsers that could be
addressed through adaptation or improvement. For example, if a parser exhibits low edit distance but poor group
accuracy, it might struggle with nuanced variations within log groups. Identifying such weaknesses can inform targeted
improvements, such as incorporating domain-specific knowledge or refining template-matching algorithms.
Experimental Setup
Working Environment
The experiments were conducted on a Windows PC with an 11th Gen Intel Core i5 processor and 16GB of RAM. Python
3.8 and PyCharm IDE were used for scripting. Fifteen log parsers were evaluated, with thirteen sourced from Zhu et al.
and two additional open-source parsers, USTEP and LogPPT.
Parameter Tuning
Each algorithm has input parameters, and experiments were run multiple times to determine the best values.
Parameters include preprocessing, pattern matching, clustering, and output parameters.
Evaluation Metrics
Several metrics are used to assess log parsing effectiveness:
Group Accuracy (GA): Measures the proportion of correctly grouped log messages. A log message is considered
"correctly parsed” only if it is grouped with other log messages in a way that is consistent with the ground truth.
Parsing Accuracy (PA): Measures the percentage of correctly parsed log messages. To be considered "correctly parsed,”
a log message must have all its static text and dynamic variables (fixed and variable parts) correctly identified. This
definition is based on a study by Khan et al. (34). Another study by Liu et al. (32) defines PA as Message Level Accuracy
(MLA). For a log message to be "correctly parsed” according to MLA, every token of the log message must be correctly
identified as a constant or a variable part.as shown in (equation 1):

PA = count(correctly parsed messages) / count(the total number of log messages) 1)

Edit Distance (ED): Measures the similarity between parsed templates and ground truth templates using the

Levenshtein distance algorithm.

Precision, Recall, and F1-score: Precision measures true positives among positive predictions (equation 2), recall

measures true positives among actual positives (equation 3), and F1-score balances precision and recall (equation 4):

Precision = TP / TP + FP (2)

Recall= TP /TP +FEN 3)
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F1 =2 * Precision * Recall / Precision + Recall 4)

Time Cost: Measures the time taken to parse log datasets.
Robustness: Evaluates the tool's ability to handle diverse log formats, adapt to changing patterns, and scale efficiently.

The Chosen Evaluation Metrics
Chosen Metrics Breakdown:

e Group Accuracy (GA): Focuses solely on how well messages are grouped based on templates, ignoring variable
content. Ideal when variable data is unused (e.g., anomaly detection based on event sequences).

e Message Level Accuracy (MLA): Considers both grouping and individual message parsing accuracy. Suitable
when variable data matters but message frequency doesn’t significantly affect importance (e.g., parameter value
analysis).

e Edit Distance (ED): When analyzing individual messages parsing accuracy and capturing nuances in variable
data is crucial, ED provides a fine-grained measure of similarity beyond simply "correct" or "incorrect."

e Template Accuracy (TA): Evaluate how well templates themselves are identified, independent of message
frequency. TA is used when variable data matters and message importance isn't frequency-based (e.g.,

analyzing specific log events regardless of their repetition).

GA, MLA, and TA are linked, with perfect scores in TA or MLA implying a perfect GA score. However, the reverse isn’t
true, incorrect templates can achieve the same grouping as correct ones.
Log Parsing as a Classification Problem
We can consider the log parsing problem as a multi-classification problem; in this part, we will explain a new approach
to deal with the log parsing problem as a multi-classification problem to find the F1 Score of the messages parsing
results. As long as the ground truth dataset has a limited number of unique event templates EV = {E1, E2, ...ENJ}, in this
case, these templates will be our classes. For this purpose, we have three important concepts mainly TP, FP, and FN for
each class, where:
e TP: the current content belongs to E1 in the ground truth dataset and the parsed result dataset—TPE1
e FP and FN: the current content belongs to E1 in the ground truth dataset but is incorrectly identified to belong
to E2 in the parsed result = FNE1 and FPE2
e FN: the current content belongs to E1 in the ground truth dataset but is incorrectly identified to belong to a
newly defined template in the parsed result which does not exist in the ground truth—FNE1
Now we can calculate Precision and Recall for each class in EV = {E1, E2, ...EN} using equations 5 and 6 respectively:

Precision for class (Ei): Precision Ei = TPEi / TPEi + FPEi (5)
Recall for class (Ei): R Ei = TPEi / TPEi + FNEi (6)

Overall Precision and Recall
To find the overall Precision and Recall of the classes we will take into account the number of instances of each class in
the ground truth, number of occurrences, in other words, we will calculate the weighted average of class precision and

recall using (equations 7 and 8) respectively:

Weighted Avg.Precision = ) (Precisioni * Instancesi) / ) (Instancesi) fori=0....n 7)

Weighted Avg.Recall =} (Recalli * Instancesi) / ) (Instancesi) fori=0......... n (8)
Now we can compute the F1-score of the parsed messages using (equation 9):
F1=2* Weighted Avg.Precision * Weighted Avg.Recall / Weighted Avg.Precision + Weighted Avg.Recall )
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Table 3 shows the message level accuracy (MLA) of each parser across datasets. Drain achieved the highest average
MLA (0.78), followed by AEL (0.66) and LogMine (0.46). Conversely, MoLFI, LKE, LogSig, and Spell had the lowest

MLA.

Table.3: Message level accuracy on different datasets.

Dataset AEL Brain Drain | LenMa LFA LKE LogPPT | LogCluster LogMine | LogSig | MoLFI SHISO Spell USTEP
Apache 0.55 | 0.01 0.9 0.12 0.02 0.01 0 0.01 0.49 0.01 0 0.53 0.01 0.57
ECCMail 049 | 0.5 0.8 0.49 0.45 0.01 0.17 0.25 0.36 0.05 0.13 0.24 0.15 0.56
ECCMailEW | 0.88 | 0.82 1 0.4 0.37 0.25 0.39 0.29 0.77 0.29 0.02 0.7 0.27 0.88
Firewall 0.85 | 0.66 1 0.49 0.15 0 0 0 0.78 0 0 0.42 0 0.49
IIS 001 |0 0.01 0.002 0.002 | 0.001 | 0.001 0.001 0 0 0 0.001 0 0.09
Plesk 0.96 | 0.57 0.96 0.9 0.12 0.02 - 0.12 0.29 0 0 0.74 0 0.43
Whmcs 0.86 | 0.35 0.9 0.89 0 0 0.09 0.31 0.5 0 0 0.55 0 0.86
Average 0.66 | 0.42 0.78 0.47 0.16 0.04 0.09 0.14 0.46 0.05 0.02 0.45 0.06 0.55

Table 4 shows the template accuracy (TA). Drain again performed best, with an average TA of 0.82. LenMa achieved

the highest TA in the two datasets, but Drain outperformed the overall.

Table.4: Template accuracy on different datasets.

Dataset AEL | Brain Drain | LenMa | LFA LKE LogPPT | LogCluster | LogMine | LogSig | MoLFI | SHISO | Spell USTEP
Apache 0.68 | 0.02 0.85 | 0.41 0.05 0.09 0 0.003 0.52 0.07 0 0.53 0.06 0.76
ECCMail 0.92 | 0.37 0.94 | 0.54 0.89 0.04 0.02 0.29 0.68 0.09 0.03 0.36 0.01 0.91
ECCMailEW | 0.94 | 0.81 1 0.03 041 0.67 0.01 0.06 0.8 0.64 0.09 0.87 0.04 0.94
Firewall 0.67 | 0.23 1 0.5 0.14 0 0 0 0.5 0 0 0.36 0 0.01
IIS 016 | 0 024 | 0.27 0.03 0.01 0.001 0.003 0.17 0 0 0.25 0 0.06
Plesk 0.89 | 0.05 0.9 0.93 0.09 0.13 - 0 0.7 0 0 0.75 0 0.92
Whmcs 0.52 | 0.03 0.84 | 0.56 0 0 0.02 0.01 041 0 0 0.4 0 0.56
Average 0.68 | 0.22 0.82 | 046 0.23 0.13 0.01 0.07 0.54 0.8 0.02 0.5 0.02 0.59

Table 5 shows the group accuracy (GA). Drain had the highest average GA (0.79), with AEL and LenMa also performing

well

Table.5: Group accuracy on different datasets.
Dataset AEL | Brain Drain | LenMa | LFA LKE LogPPT | LogCluster | LogMine | LogSig | MoLFI | SHISO | Spell USTEP
Apache 0.61 | 0.03 0.75 0.27 0.05 0.001 0 0.002 05 0 0 0.55 0.001 | 0.73
ECCMail 0.57 | 0.55 0.95 0.48 0.46 0.001 0.02 0.23 0.47 0 0.08 0.25 0.09 0.57
ECCMailEW | 1 0.99 1 0.28 0.27 0.01 0.001 0.02 0.28 0.01 0.003 0.99 0.19 0.99
Firewall 0.86 | 0.67 1 0.48 0 0 0 0 0.8 0 0 0.43 0 0.48
IIS 0.005 | 0 0.005 | 0.01 0 0.001 0.002 0.002 0.001 0 0 0.001 0 0.02
Plesk 0.97 | 0.7 0.97 0.96 0 0.01 - 0.14 0.23 0 0 0.79 0 0.29
Whmcs 0.83 | 0.22 0.88 0.83 0 0 0.04 0.22 0.45 0 0 0.45 0 0.22
Average 0.69 | 0.45 0.79 0.47 0.11 0.003 0.01 0.09 0.39 0.001 | 0.01 0.49 0.04 0.47
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Table 6 shows the edit distance (ED). Drain had the lowest average ED (7), indicating better alignment with ground

truth messages.

Table.6: Edit distance on different datasets..

Dataset AEL Brain Drain LenMa LFA LKE LogPPT LogCluster LogMine | LogSig MoLFI SHISO Spell USTEP
Apache 20 18 2 37 66 78 48 76 26 58 66 20 37 20
ECCMail 11 15 4 12 18 24 17 29 14 26 24 25 18 9
ECCMailEW | 3 3 0 31 26 25 8 12 4 12 12 22 10 3
Firewall 1 2 0 5 14 21 16 66 3 18 43 7 20 35
IIS 39 43 39 37 48 44 14 71 28 54 42 26 32 45
Plesk 1 13 1 2 110 132 - 118 22 131 156 7 36 18
Whmcs 5 20 3 5 74 97 12 111 17 51 176 15 83 5
Average 11 16 7 18 51 60 16 69 16 50 75 17 34 19

Robustness of Log Parsers

Figures 9, 10, and 11 show the distribution of MLA, TA, and GA across datasets. Drain consistently achieved the highest

median accuracy. Figure 12 shows the Fl-score distribution, with Drain achieving the highest F1-score (around 1.0).

Figures 13 to 16 show MLA across different log volumes. Drain maintained stable accuracy even as log volume increased.

In the same way, we assess the performance of log parsers across different log volumes in terms of Template Accuracy,

in summary, Drain outperforms the other log parsers in 4 out of 4 datasets included in these figures.
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Efficiency of Log Parsers

Figures 17, 18, and 19 show the execution time of parsers across different log volumes. Drain recorded the lowest

execution time and minimal changes in processing time, even with large log sizes.

Findings and Results
RQ1: Selecting the Most Effective Log Parsing Tool for NANS

Drain is the most effective log parser for NANS, with high accuracy, robustness, and efficiency. However, it performed

poorly on the IIS dataset, indicating room for improvement.

RQ2: Adapting Existing Log Parsing Tools
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To better serve NANS, log parsers need to support Arabic language parsing and improve the handling of log messages
starting with digits. Integrating Natural Language Processing (NLP) techniques could enhance template identification.
RQa3: Strengths, Weaknesses, and Underlying Principles

e Strengths: Automation, efficiency, accuracy, scalability, and flexibility.

e  Weaknesses: Domain-specific limitations, false positives/negatives, complexity, and limited user interfaces.

e Underlying Principles: Regular expressions, lexical analysis, and machine learning (ML).

Conclusion

The study distinguishes itself from previous research in several key ways. First, it employs a comprehensive set of six
evaluation metrics —message-level accuracy, template accuracy, group accuracy, edit distance, F1 score, and execution
time—ensuring a thorough and nuanced assessment of log parsing tools. This provides NANS administrators with a
more informed basis for decision-making. Second, the use of real-world datasets sourced directly from NANS
operations ensures that the evaluated tools are tested on data reflecting actual challenges faced by administrators,
enhancing the relevance and generalizability of the findings. These datasets differ significantly from those used in prior
research, contributing new insights to the field. Third, this study represents the first exploration of log parsing within
NANS, paving the way for future research and potential improvements in log mining tasks and system efficiency.
Finally, by identifying the most accurate tool, the study streamlines tool selection for NANS administrators, reducing
their initial scope from fifteen tools to one and allowing them to focus their efforts on learning, utilizing, and improving
this tool for broader applicability.
Limitations
This empirical study acknowledges several limitations that must be considered when interpreting and applying the
results to real-world scenarios. First, the limited dataset diversity, with only seven datasets used due to access
restrictions, may restrict the generalizability of findings across all log types and environments, despite representing
various formats and sources. Second, the reliance on ground truth datasets, which were manually parsed and limited
to 2,000 records per dataset, poses a constraint, as larger datasets are known to enhance evaluation accuracy, potentially
affecting the results' applicability to real-world, larger-scale deployments. Third, the manual generation of ground truth
datasets introduces the possibility of unintended bias, which could influence evaluation outcomes despite efforts to
mitigate it. Additionally, the study focused on event information extraction without directly addressing the
effectiveness of parsed logs for downstream tasks like anomaly detection and failure prediction, which may depend on
other factors. Despite these limitations, the study provides valuable insights into the capabilities of the evaluated log-
parsing tools. By acknowledging these constraints and considering them in decision-making, administrators can better
select tools suited to their specific needs and log types. The study also underscores the importance of addressing data
diversity, ground truth generation methods, and downstream task requirements in future log-parsing research.
Future Work
This study establishes a foundation for advancing log parsing capabilities within NANS, identifying several promising
directions for future work. First, expanding ground truth datasets by increasing their size and incorporating diverse log
formats, sources, and complexities will enhance evaluation accuracy and generalizability, while automating ground
truth generation can reduce manual effort. Second, developing a log parsing toolkit that integrates top-performing
parsers, offers a user-friendly interface, and supports multiple export formats will provide NANS administrators with
customizable, efficient tools. Third, enabling real-time parsing and monitoring through streaming integration, a
graphical interface for visualization, and an alert system for anomaly detection will ensure proactive service availability.
Additionally, exploring domain-specific parsers, advanced techniques like deep learning and natural language
processing, and benchmarking emerging tools will further refine parsing accuracy and flexibility. By pursuing these

avenues, NANS can significantly improve log analysis, anomaly detection, and overall service security and efficiency.
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