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Abstract: In today’s era dominated by software applications and smart systems, our daily activities increasingly rely 

on various smart applications, including shopping apps, e-commerce, web, and social media applications. As these 

applications and systems grow, so does the challenge of monitoring and maintaining their 24/7 operation, posing a 

significant task for online service providers. Logs, key tools for recording system runtime information, are crucial in 

managing web services. However, as systems and applications become more complex, manual review of log records 

becomes time-consuming and impractical. The development of automated log analysis tools has recently garnered 

significant attention from researchers in the academic and industrial sectors. These tools are pivotal in several down-

stream tasks, such as anomaly detection, failure prediction, and system diagnosis. The primary step in log analysis 

is log parsing, which involves transforming unstructured log messages into structured data for subsequent mining 

tasks. To date, over 30 log parsing tools have been developed. This paper focuses on an empirical study of fifteen log 

parsing tools, chosen for their public availability of source code and proven high accuracy and efficiency in prior 

research. The study was conducted using seven real datasets collected from servers at the National Agency for Net-

work Services (NANS) at the Ministry of Communications and Technology in Syria, including an Apache web server, 

Linux Mail server, WHMCS (Web Hosting Billing & Automation Platform), Microsoft web server IIS (Microsoft In-

ternet Information Services 10.0), Plesk (Web Hosting Control Panel), and a Cisco ASA 5512 Firewall device. A com-

parative analysis of these tools in terms of accuracy, efficiency, and scalability was performed to assist system ad-

ministrators in selecting the most suitable log-parsing tool for their analysis tasks. The study finds that Drain demon-

strates the best performance in these aspects. Our contributions provide a strong link between research and industry 

log parsing, consolidating past research efforts and facilitating future advancements. 
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Introduction 

Over the past decade, data centres and computer networks have seen dramatic growth in processing power and size, 

handling vast amounts of log data daily. In cases of service interruption or failure, system administrators are required 
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to manually review logs to identify faults, a process that is time-consuming and dependent on their expertise. Given 

the critical importance of maintaining uninterrupted national data centre services, the implementation of tools for 

monitoring and analyzing log records is imperative. Any server malfunction can lead to significant damage. A study 

by the Ponemon Institute, sponsored by Emerson Network Power, highlights the escalating costs of data centre 

downtime. The study reports that the average cost of an unplanned data centre outage in the US has risen to over 

US$7,900 per minute, a 41% increase from US$5,600 in 2010, underscoring the economic impact of such outages. 

In recent decades, modern software such as search engines, instant messaging apps, and cloud systems, has become 

increasingly integrated into our daily lives and indispensable. Most of these software systems are expected to be 

available 24/7, as any significant downtime can lead to substantial revenue loss, especially in large-scale distributed 

systems (1). 

For distributed systems like electronic payment applications, commercial applications, and cloud systems, malfunctions, 

ranging from server outages to slow responses or incorrect results, can result in user dissatisfaction, loss of confidence, 

and significant revenue losses. This is particularly critical given the presence of competitors offering similar services 

with varying quality and availability. 

Identifying the source of system malfunctions is challenging due to a range of potential causes, including network errors, 

physical server malfunctions, software system errors, or, in the worst case, hacking and malicious activities. Log files, 

which record system run-time information, are the primary data source for mitigating the negative effects of system 

failures or predicting anomalies. 

Logs are semi-structured texts generated by logging statements in software source code, added by developers during 

system or application development. Systems record log messages for monitoring malfunctions, identifying errors, and 

system maintenance. However, manually reviewing logs is often a futile and time-consuming task due to several 

reasons: (1) the size and complexity of modern systems result in an ever-increasing volume of log records, demanding 

extensive review time; (2) systems developed collaboratively or using third-party tools may generate logs that are 

inaccessible or unfamiliar to developers and system engineers; and (3) logs, which reflect developer-specific logging 

instructions, often require domain-specific knowledge, making them difficult for system engineers to interpret. These 

challenges highlight the need for automated and efficient log parsing solutions to streamline log analysis and reduce 

manual effort. 

Therefore, the development of automated tools for analyzing and extracting useful information from log records has 

become crucial to ensure the continued availability and quality of services. 

Automated log mining tools employ statistical, data analysis, machine learning, and deep learning techniques to 

automate log analysis tasks. These tools typically require structured data, whereas log records are semi-structured due 

to their free-text style. Addressing the semi-structured nature of log messages has attracted significant attention from 

researchers in academic and industrial fields, leading to the development of up to 30 log parsing tools (1) (2). The 

objective of log parsing is to transform semi-structured log records into structured data, resulting in a set of record 

templates and parameters. 

A log message generally comprises a header and message content. The header usually contains basic information such 

as timestamps, the generating component, IP addresses, and the message’s severity level (info, warning, error, etc.). 

Thanks to the commonality of header contents, it can be easily distinguished and extracted using regular expressions. 

The content of the log message is divided into two main parts: 

• The fixed part, which is the constant text written by developers within the source code’s print statement 
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remains unchanged in each log repetition. 

• The variable part that reflects the system’s state during runtime and varies from one message to another. 

  

Fig. 1:  Log messages 

 

Fig. 2:  Structured log 

For instance, in the first log message in Figure 1, the header (e.g., 'Oct 04 10:25:53 EEST %ASA-session-6-305011') can be 

readily identified through regular expressions. The log message consists of a template 'Built dynamic <*> translation 

from <*> to <*>' and the parameter list is '['UDP', 'PKI_Public:ip_add/46905', 'Outside:ip_add/17481']' as shown in Figure 

2. 

Automated Log Analysis 

For better comprehension of the log parsing step, it is worth noting that the entire automated log analysis process, as 

shown in Figure 3, primarily involves the following steps (1): 

• Logging: It is the first step, where the developers add the print statements to the system or application source 

code which will generate the log messages later during the system runtime. In the logging step, developers 

must consider three main questions: where to log, what to log, and how to log. 

• Log Compression: Log compression is a technique used to reduce the size of log files generated by distributed 

systems. These log files can be very large, often reaching several gigabytes per day, which poses a challenge for 

service providers to provide sufficient storage space. There are several approaches to log compression, 

including bucket-based compression, dictionary-based compression, and statistics-based compressors. 

• Log Parsing: Converts semi-structured log data to structured data, making it compatible with log analysis tools. 

Structured data allows for efficient search, filtering, grouping, counting, and mining of logs. 

• Log Mining: Refers to the process of analyzing large volumes of log data to extract meaningful patterns and 

trends. This is done through the use of statistical methods, data mining techniques, and machine learning 

algorithms. By analyzing log data, it is possible to gain valuable insights that can be used to guide and improve 

the monitoring, administration, and troubleshooting of software systems. 
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Fig. 3:  An overall framework for automated log analysis. 

 

 

 

 

Fig. 4:  Offline log parser working flow. 

Log Parsing Applications 

Usage analysis is crucial during software development and maintenance to understand how users interact with a system, 

and log parsing plays a key role in enabling this. Anomaly detection has also become an essential part of system 

monitoring and maintenance tasks, with various techniques being employed. For instance, SwissLog (6) presents a 

robust and unified anomaly detection model for diverse faults, including sequential log anomalies and performance 

issues, using deep learning. Similarly, in (7), Tan et al. developed a deep learning (DL)-based log anomaly detection 

framework for 5G CN, which encompasses log parsing, log grouping, feature extraction, and model training, with each 

module designed for distinct functionalities to enable combinational usage in various situations. On the other hand, 

transfer learning has been used for anomaly detection, as seen in (8), where log parsing serves as a necessary data 

preprocessing step. 

Frequently, system issues such as disk errors or network disconnections can occur repeatedly or be reported multiple 

times by different users, leading to many duplicate issues. Automatically identifying these duplicates is essential to 

reduce the workload of developers and support engineers (2). Additionally, extracting all possible event templates from 

logs is a critical step before constructing a performance model, which takes event sequences as inputs (2). Diagnosing 

failures manually is challenging and time-consuming due to the large, verbose, and unstructured nature of logs, making 

log parsing a necessary step (2). 

Log Parsers Working Mode 

Log parsers can be categorized into three modes of operation: offline, online, and hybrid. 

• Offline Mode: Offline log parsers process the log messages in batches where the historical log data should be 

loaded into the memory, refer to Figure 4. Early log parsers such as SLCT (16), LKE (17), LogMine (18), and 

IPLoM (19) operate in this mode. Offline parsing allows log parsers to scan all the messages and parse the logs 

with a global view. However, offline log parsers are not suitable for real-time log analytics, making them less 

effective for hyper-scale distributed systems. 

• Online Mode: Online log parsers operate in real-time on log streams, as shown in Figure 5. Examples of such 

parsers include Spell (20), Drain (21), and SHISO (22). These parsers are advantageous over offline solutions in 

two ways. 
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Fig. 5:  Online log parser working flow. 

 

 

Fig. 6:  Hybrid log parser working flow. 

Firstly, they can analyze newly collected logs on the fly and incrementally refine their parsing results without 

requiring offline training. This makes them ideal for real-time tasks like system monitoring and fault diagnosis. 

Secondly, online parsers do not require loading the entire input data into memory, making them more 

accessible to users with limited resources. 

• Hybrid Mode: Hybrid log parsers, such as NuLog (23) and LogParse (24), work in both an offline training phase 

and an online parsing phase. These parsers are trained offline to populate the model parameters and then parse 

input logs in an online mode. By combining the advantages of offline and online approaches, hybrid log parsers 

can better learn log characteristics from different sources. Refer to Figure 6 for a visual representation. 

Scope 

In this study, we have applied fifteen different log parsers to our dataset for several reasons. Firstly, log formats can 

vary significantly, and a single parser might not be effective in handling all the variations present in the NANS Agency’s 

log data. Secondly, different parsers might have strengths and weaknesses in terms of accuracy, efficiency, and handling 

specific log structures. By applying multiple parsers, we aimed to obtain a comprehensive evaluation of parsing 

effectiveness for the NANS Agency’s log data. 

We applied these fifteen parsers to seven real datasets sourced from the NANS servers. This work underscores the 

significance of the log parsing process and how the accuracy of its results impacts the subsequent stages of log analysis 

(10) (11). The chosen tools are open-source with publicly available codes and were selected for their high accuracy based 
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on prior evaluations (2) (34). These tools are AEL (29), Brain (35), Drain (21), IPLoM (31), LenMa (28), LFA (25), LKE 

(17), LogSig (27), LogMine (18), LogCluster (26), LogPPT(33), MoLFI (36), SHISO (22), Spell (20) and USTEP (37). 

Motivation 

Despite the extensive study of log parsing in recent years, there remains a lack of awareness among users about the 

distinct advantages and impacts of various log parsers on subsequent log mining tasks. This gap often leads to 

unnecessary reimplementation or redesign of log parsers, a process that is not only time-consuming but also redundant. 

To bridge this gap, this paper examines fifteen log parsers and packages them into a toolkit to facilitate their reuse. 

Paper Structure 

The following is the organization of the paper. In Section 2, we will review the current state-of-the-art log parsing tools. 

We will highlight the limitations of the existing tools, as well as the characteristics of a good parser. Section 3 will 

describe the study methodology, the design, and the log parsers that we have selected to apply.  Section 4 will report 

on the experimental setup and evaluation results. Finally, in Section 5, we will conclude the paper. 

Literature Review 

Log data is essential for system monitoring and management. Log parsing transforms raw log data into structured 

information, enabling businesses to communicate, govern, and make decisions based on data [38]. Effective log parsing 

reduces complexity, improves understanding, and provides insights into system behaviour, facilitating better resource 

allocation and operational management. 

Existing Log Parsing Tools 

The field of log parsing has seen the development of various tools, each with unique approaches to improving accuracy 

and efficiency. LLMParser (39) is a framework that leverages large language models (LLMs) for log parsing. It employs 

in-context learning and an adaptive parsing cache to enhance accuracy and efficiency, with three LLMs (ChatGPT, 

Davinci, and Curie) tested for performance. Another study (40) explores the potential of ChatGPT for log parsing, 

highlighting its promise with appropriate prompts but also noting challenges such as handling log-specific data and 

designing effective prompts. LogDiv (41) utilizes GPT-3 for in-context learning, selecting diverse log samples to 

generate precise log templates without the need for model tuning. AdaptParse (42) approaches log parsing by 

transforming the template generation problem into a word classification task. It uses semantic patterns and an attention 

network to distinguish between template words and variable words, improving parsing accuracy. DA-Parser (43) 

introduces a domain-aware head to identify the source domains of logs, effectively transforming multi-domain parsing 

into a series of single-domain parsing problems. This allows for more effective log parsing across diverse domains. 

LogSlaw (38) is an online log parsing algorithm that clusters logs based on improved Jaccard Similarity, making it 

suitable for heterogeneous logs with large datasets. PatCluster (44) is an offline parsing method that uses frequent 

words to refine log templates, improving parsing accuracy for complex log structures. Documentation-based 

Semantic-Aware Log Parsing (45) is an innovative approach that leverages software documentation to enhance parsing 

accuracy, even when source code access is unavailable. Logram (46) uses n-gram dictionaries for efficient log parsing, 

making it suitable for streaming scenarios where logs are continuously generated. UniParser (32) transforms log parsing 

into a token classification problem, using token and context encoders to discern patterns in log messages. Prefix-Graph 

(49) is an online parsing technique that merges prefix trees with probabilistic graphs, offering versatility in handling 

diverse log formats. LogParse (24) supports incremental template learning by classifying words into template or 

variable categories, enabling real-time log matching and new template learning. Finally, NuLog (23) operates in both 

offline and online modes, using self-supervised learning to extract log templates and embedding vectors for efficient 

log parsing. 

Limitations of Current Log Parsing Tools 

Limitations of current log parsing tools have been extensively documented in the literature [41, 33, 50, 35, 32, 38, 9]. 

These limitations include: (1) reliance on manual features, where parsers depend on human-crafted rules, limiting their 
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adaptability; (2) suboptimal deep learning approaches, as deep learning models require extensive training and often 

struggle with unseen log formats; (3) limited robustness, with parsers frequently failing to handle unexpected log 

structures and lacking semantic understanding; (4) difficulties with variable-length logs, as parsers struggle to process 

messages of varying lengths, often requiring multiple templates; (5) limited adaptability, where parsers need retraining 

for new software versions and face challenges with large datasets or evolving log formats; and (6) incomplete evaluation, 

as many methods lack thorough and comprehensive evaluation, hindering their real-world effectiveness. These issues 

collectively highlight the need for more advanced and flexible log parsing solutions. 

Key Characteristics for Efficiency and Adaptability 

Effective log parsers should possess key characteristics to ensure efficiency and adaptability. These include: **no-

supervision**, enabling operation without prior knowledge or human input; **heterogeneity**, allowing the handling 

of logs from diverse applications and systems; **efficiency**, ensuring the ability to process logs faster than their 

generation rate; and **scalability**, enabling the management of large-scale log data without performance bottlenecks. 

These properties are essential for developing robust and versatile log parsing tools capable of meeting the demands of 

modern systems. 

The field of log parsing has seen significant advancements, but challenges remain, including the need for automation, 

industrial adoption, comprehensive evaluation, and standardized datasets. Addressing these issues is crucial for 

developing robust and widely applicable log parsing solutions. 

 

Research Methodology 

Research Design 

The study aims to answer three research questions: 

• RQ1: What are the most effective log parsing tools for NANS, considering their specific logs and needs? 

• RQ2: How can existing log parsing tools be adapted or improved to better serve the agency’s log mining 

requirements? 

• RQ3: What are the strengths, weaknesses, and underlying principles of the existing log parsing tools? 

To address these questions, fifteen log parsing tools were selected based on the following criteria: 

• Open-source and publicly available: The tools are open-source, allowing for cost-effective implementation 

and future customization. 

• Previous evaluations on public datasets: The tools have been evaluated in prior studies, but their performance 

on NANS’s private dataset needs to be assessed. 

• High accuracy in previous studies: Most tools have demonstrated high accuracy in prior evaluations, though 

this study will use a broader range of metrics (e.g., Group Accuracy, Message Level Accuracy, Template 

Accuracy, F1 Score, Robustness, and Efficiency). 

• Python implementation: The tools are implemented in Python, aligning with NANS’s existing infrastructure. 

Data Collection 

Log data was collected from six servers within the National Data Center at NANS, including a Linux mail server, 

Apache web server, WHMCS, Microsoft IIS, Plesk, and Cisco ASA 5512 Firewall. A central Syslog server was deployed 

to aggregate logs from these servers, ensuring comprehensive coverage while adhering to privacy policies. The Syslog 

protocol was used to collect and store log messages, which include timestamps, severity levels, and event details. 

Figures 7 and 8 illustrate the Syslog protocol and sample configuration entries, respectively. To summarize the available 

datasets under the study, refer to Table 1. 
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Fig. 7:  Syslog Server. 

 

 Fig. 8:  Sample configuration entries 

To evaluate the accuracy of the applied log parsing algorithms, it is required to have the ground truth dataset. In the 

context of log parsing, the ground truth dataset refers to a dataset that is manually annotated or labelled with the correct 

parsing information, event templates and variables. This dataset serves as a reference or benchmark against which the 

performance of log parsing algorithms or techniques can be evaluated. It allows us to assess the accuracy, precision, 

recall, and other performance metrics of the log parsing algorithms. Creating a ground truth dataset is a time-consuming 

process, as it requires human expertise to annotate the logs accurately. The ground truth datasets for this study have 

been created manually by the operators in NANS. Each dataset contains 2,000 manually labelled log messages. This is 

one of the good points of this study, as all of the applied tools were applied and evaluated on publicly available datasets 

provided by Loghub with their ground truth datasets. 

Data Preprocessing 

The collected log data required preprocessing to match the input format expected by the log parsing tools. Python was 

used to clean the datasets, removing unwanted symbols and aligning them with the required log formats. Table 2 

summarizes the log formats for each dataset. Preprocessing ensured that the datasets were ready for parsing, despite 

their initial heterogeneity. 

Log Parsers Overview 

At a high level, log parsing algorithms can be divided into two main categories syntax-based and semantically-based. 

Syntax-based algorithms rely on the structure and format of log messages and involve defining a set of rules or patterns 

that describe the expected syntax of log entries. Semantically-based log parsing, on the other hand, focuses on 

understanding the meaning or semantics of log entries. This approach aims to extract higher-level information about 

the events and activities described in the logs. Fifteen log parsing algorithms were selected for this study, categorized 

into syntax-based and semantic-based approaches. 
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      Table.1: Log Dataset Information. 

Dataset Description Data Size #Messages 2k # Templates 

Apache Apache server log 77 MB 338,166 26 

Mail Server 
Linux mail server 

info log 
21.5 MB 179,703 236 

Mail Server EW 
Linux mail server 

error and warning log 
600 KB 4,210 16 

Firewall 
Cisco ASA 5512 

firewall log 
31 MB 162,730 15 

WHMCS 

Web hosting billing 

and automation 

platform 

11 MB 34,913 67 

Plesk 
Web hosting control 

panel 
2.488 MB 8,345 71 

IIS 
Internet Information 

Services (Microsoft) 
905 KB 5,263 21 

 

      Table.2: Datasets Log Format. 

Dataset Log Format 

Apache <RemoteHost> <RemoteUser> <AuthUser> <Datetime> <Timezone> <Content> 

Mail Server  <Month> <Day> <Time> <Host> <Service> <QueueID> <Content> 

Mail Server EW <Month> <Day> <Time> <Host> <Service> <SeverityLevel> <Content> 

Firewall <Month> <Day> <Time> <TimeZone> <Component> <Content> 

IIS <Date> <Time> <S_IP> <Content> 

Plesk <IP> <User> <Date> <Time> <Content> 

WHMCS <IP> <User> <Date> <Time> <Content> 

 

Syntax-Based: 

USTEP (37) uses an evolving tree structure to handle dynamic log messages. It adapts to new log formats by updating 

its tree structure, making it suitable for environments with evolving log data. MoLFI (36) employs a multi-objective 

approach to identify log message formats, ensuring the high frequency and specificity of the generated templates. Drain 

(21) is an online log parsing method that uses a fixed-depth tree structure. It preprocesses log messages, searches for 

log groups based on message length and token similarity, and updates the parse tree dynamically. Spell (20) is designed 

for real-time parsing of streaming log data, leveraging the Longest Common Subsequence (LCS) algorithm to identify 

patterns. LogMine (18) handles heterogeneous log messages by generating a hierarchical structure of patterns, 

minimizing computational overhead. LenMa (28) groups log messages based on word length similarity using 

hierarchical clustering. LogCluster (51) clusters logs to identify problems, using a knowledge base to reduce redundant 

effort. SHISO (22) incrementally mines log formats by constructing a hierarchical tree structure, reducing the need for 

manual analysis. LogSig (27) generates system events from textual logs by categorizing messages into event types using 

message signatures. LFA (25) separates static and variable parts of log lines using clustering algorithms, identifying 

recurring event types. IPLoM (31) iteratively partitions log messages to identify line formats, improving clustering 

accuracy. LKE (17) combines clustering algorithms and heuristic rules to generate log templates, refining clusters for 
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granular insights. AEL (29) abstracts log lines into execution events by anonymizing dynamic parts, tokenizing log lines, 

and categorizing them into groups. 

Semantic-Based: 

LogPPT (33) transforms log parsing into a parameter recognition problem, using a pre-trained language model to 

predict parameter positions in log messages. It employs few-shot learning, requiring only a small set of labelled log 

messages for training, and leverages semantic information for more accurate parsing. 

 

Evaluation 

We evaluate fifteen log parsers in six key areas crucial for real-world applications to answer the research questions, the 

experimental setup and the algorithms’ parameters will be covered, and the choice of the accuracy metrics will be 

explained in detail. The evaluation criteria used are message level accuracy, robustness, efficiency, group accuracy, edit 

distance, and template accuracy. By analyzing these six key areas, this study provides a comprehensive insight into the 

strengths and weaknesses of different log parsers, aiding in selecting the most suitable tool that best aligns with NANS-

specific logs and needs. Furthermore, this evaluation can reveal potential weaknesses in specific parsers that could be 

addressed through adaptation or improvement. For example, if a parser exhibits low edit distance but poor group 

accuracy, it might struggle with nuanced variations within log groups. Identifying such weaknesses can inform targeted 

improvements, such as incorporating domain-specific knowledge or refining template-matching algorithms. 

Experimental Setup 

Working Environment 

The experiments were conducted on a Windows PC with an 11th Gen Intel Core i5 processor and 16GB of RAM. Python 

3.8 and PyCharm IDE were used for scripting. Fifteen log parsers were evaluated, with thirteen sourced from Zhu et al. 

and two additional open-source parsers, USTEP and LogPPT. 

Parameter Tuning 

Each algorithm has input parameters, and experiments were run multiple times to determine the best values. 

Parameters include preprocessing, pattern matching, clustering, and output parameters. 

Evaluation Metrics 

Several metrics are used to assess log parsing effectiveness: 

Group Accuracy (GA): Measures the proportion of correctly grouped log messages. A log message is considered 

"correctly parsed" only if it is grouped with other log messages in a way that is consistent with the ground truth. 

Parsing Accuracy (PA): Measures the percentage of correctly parsed log messages. To be considered "correctly parsed," 

a log message must have all its static text and dynamic variables (fixed and variable parts) correctly identified. This 

definition is based on a study by Khan et al. (34). Another study by Liu et al. (32) defines PA as Message Level Accuracy 

(MLA). For a log message to be "correctly parsed" according to MLA, every token of the log message must be correctly 

identified as a constant or a variable part.as shown in (equation 1): 

PA = count(correctly parsed messages) / count(the total number of log messages)      (1) 

 

Edit Distance (ED): Measures the similarity between parsed templates and ground truth templates using the 

Levenshtein distance algorithm. 

Precision, Recall, and F1-score: Precision measures true positives among positive predictions (equation 2), recall 

measures true positives among actual positives (equation 3), and F1-score balances precision and recall (equation 4): 

Precision = TP / TP + FP                                                         (2) 

       Recall =  TP / TP + FN                                                          (3)  
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       F1 = 2 * Precision * Recall / Precision + Recall                                       (4)                           

Time Cost: Measures the time taken to parse log datasets. 

Robustness: Evaluates the tool's ability to handle diverse log formats, adapt to changing patterns, and scale efficiently. 

The Chosen Evaluation Metrics 

Chosen Metrics Breakdown: 

• Group Accuracy (GA): Focuses solely on how well messages are grouped based on templates, ignoring variable 

content. Ideal when variable data is unused (e.g., anomaly detection based on event sequences). 

• Message Level Accuracy (MLA): Considers both grouping and individual message parsing accuracy. Suitable 

when variable data matters but message frequency doesn’t significantly affect importance (e.g., parameter value 

analysis). 

• Edit Distance (ED): When analyzing individual messages parsing accuracy and capturing nuances in variable 

data is crucial, ED provides a fine-grained measure of similarity beyond simply "correct" or "incorrect." 

• Template Accuracy (TA): Evaluate how well templates themselves are identified, independent of message 

frequency. TA is used when variable data matters and message importance isn’t frequency-based (e.g., 

analyzing specific log events regardless of their repetition). 

GA, MLA, and TA are linked, with perfect scores in TA or MLA implying a perfect GA score. However, the reverse isn’t 

true, incorrect templates can achieve the same grouping as correct ones. 

Log Parsing as a Classification Problem 

We can consider the log parsing problem as a multi-classification problem; in this part, we will explain a new approach 

to deal with the log parsing problem as a multi-classification problem to find the F1 Score of the messages parsing 

results. As long as the ground truth dataset has a limited number of unique event templates EV = {E1, E2, ...EN}, in this 

case, these templates will be our classes. For this purpose, we have three important concepts mainly TP, FP, and FN for 

each class, where: 

• TP: the current content belongs to E1 in the ground truth dataset and the parsed result dataset→TPE1 

• FP and FN: the current content belongs to E1 in the ground truth dataset but is incorrectly identified to belong 

to E2 in the parsed result →FNE1 and FPE2 

• FN: the current content belongs to E1 in the ground truth dataset but is incorrectly identified to belong to a 

newly defined template in the parsed result which does not exist in the ground truth→FNE1 

Now we can calculate Precision and Recall for each class in EV = {E1, E2, ...EN} using equations 5 and 6 respectively: 

  Precision for class (Ei): Precision Ei = TPEi / TPEi + FPEi                                (5) 
  Recall for class (Ei): R Ei = TPEi / TPEi + FNEi                                         (6) 

 

Overall Precision and Recall 

To find the overall Precision and Recall of the classes we will take into account the number of instances of each class in 

the ground truth, number of occurrences, in other words, we will calculate the weighted average of class precision and 

recall using (equations 7 and 8) respectively: 

 
 Weighted Avg.Precision = ∑ (Precisioni * Instancesi) / ∑ (Instancesi)  for i = 0…..n          (7) 
 

 Weighted Avg.Recall = ∑ (Recalli * Instancesi) / ∑ (Instancesi)  for i = 0………n             (8) 

Now we can compute the F1-score of the parsed messages using (equation 9): 

 F1 = 2 * Weighted Avg.Precision * Weighted Avg.Recall / Weighted Avg.Precision + Weighted Avg.Recall    (9) 
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Experimental Results 

Accuracy of Log Parsers 

Table 3 shows the message level accuracy (MLA) of each parser across datasets. Drain achieved the highest average 

MLA (0.78), followed by AEL (0.66) and LogMine (0.46). Conversely, MoLFI, LKE, LogSig, and Spell had the lowest 

MLA. 

 Table.3: Message level accuracy on different datasets. 

Dataset AEL Brain Drain LenMa LFA LKE LogPPT LogCluster LogMine LogSig MoLFI SHISO Spell USTEP 

Apache 0.55 0.01 0.9 0.12 0.02 0.01 0 0.01 0.49 0.01 0 0.53 0.01 0.57 

ECCMail 0.49 0.5 0.8 0.49 0.45 0.01 0.17 0.25 0.36 0.05 0.13 0.24 0.15 0.56 

ECCMailEW 0.88 0.82 1 0.4 0.37 0.25 0.39 0.29 0.77 0.29 0.02 0.7 0.27 0.88 

Firewall 0.85 0.66 1 0.49 0.15 0 0 0 0.78 0 0 0.42 0 0.49 

IIS 0.01 0 0.01 0.002 0.002 0.001 0.001 0.001 0 0 0 0.001 0 0.09 

Plesk 0.96 0.57 0.96 0.9 0.12 0.02 - 0.12 0.29 0 0 0.74 0 0.43 

Whmcs 0.86 0.35 0.9 0.89 0 0 0.09 0.31 0.5 0 0 0.55 0 0.86 

Average 0.66 0.42 0.78 0.47 0.16 0.04 0.09 0.14 0.46 0.05 0.02 0.45 0.06 0.55 

 

Table 4 shows the template accuracy (TA). Drain again performed best, with an average TA of 0.82. LenMa achieved 

the highest TA in the two datasets, but Drain outperformed the overall. 

 

 Table.4: Template accuracy on different datasets. 

Dataset AEL Brain Drain LenMa LFA LKE LogPPT LogCluster LogMine LogSig MoLFI SHISO Spell USTEP 

Apache 0.68 0.02 0.85 0.41 0.05 0.09 0 0.003 0.52 0.07 0 0.53 0.06 0.76 

ECCMail 0.92 0.37 0.94 0.54 0.89 0.04 0.02 0.29 0.68 0.09 0.03 0.36 0.01 0.91 

ECCMailEW 0.94 0.81 1 0.03 0.41 0.67 0.01 0.06 0.8 0.64 0.09 0.87 0.04 0.94 

Firewall 0.67 0.23 1 0.5 0.14 0 0 0 0.5 0 0 0.36 0 0.01 

IIS 0.16 0 0.24 0.27 0.03 0.01 0.001 0.003 0.17 0 0 0.25 0 0.06 

Plesk 0.89 0.05 0.9 0.93 0.09 0.13 - 0 0.7 0 0 0.75 0 0.92 

Whmcs 0.52 0.03 0.84 0.56 0 0 0.02 0.01 0.41 0 0 0.4 0 0.56 

Average 0.68 0.22 0.82 0.46 0.23 0.13 0.01 0.07 0.54 0.8 0.02 0.5 0.02 0.59 

 

Table 5 shows the group accuracy (GA). Drain had the highest average GA (0.79), with AEL and LenMa also performing 

well 

Table.5: Group accuracy on different datasets. 

Dataset AEL Brain Drain LenMa LFA LKE LogPPT LogCluster LogMine LogSig MoLFI SHISO Spell USTEP 

Apache 0.61 0.03 0.75 0.27 0.05 0.001 0 0.002 0.5 0 0 0.55 0.001 0.73 

ECCMail 0.57 0.55 0.95 0.48 0.46 0.001 0.02 0.23 0.47 0 0.08 0.25 0.09 0.57 

ECCMailEW 1 0.99 1 0.28 0.27 0.01 0.001 0.02 0.28 0.01 0.003 0.99 0.19 0.99 

Firewall 0.86 0.67 1 0.48 0 0 0 0 0.8 0 0 0.43 0 0.48 

IIS 0.005 0 0.005 0.01 0 0.001 0.002 0.002 0.001 0 0 0.001 0 0.02 

Plesk 0.97 0.7 0.97 0.96 0 0.01 - 0.14 0.23 0 0 0.79 0 0.29 

Whmcs 0.83 0.22 0.88 0.83 0 0 0.04 0.22 0.45 0 0 0.45 0 0.22 

Average 0.69 0.45 0.79 0.47 0.11 0.003 0.01 0.09 0.39 0.001 0.01 0.49 0.04 0.47 
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Table 6 shows the edit distance (ED). Drain had the lowest average ED (7), indicating better alignment with ground 

truth messages. 

 

 Table.6: Edit distance on different datasets.. 

Dataset AEL Brain Drain LenMa LFA LKE LogPPT LogCluster LogMine LogSig MoLFI SHISO Spell USTEP 

Apache 20 18 2 37 66 78 48 76 26 58 66 20 37 20 

ECCMail 11 15 4 12 18 24 17 29 14 26 24 25 18 9 

ECCMailEW 3 3 0 31 26 25 8 12 4 12 12 22 10 3 

Firewall 1 2 0 5 14 21 16 66 3 18 43 7 20 35 

IIS 39 43 39 37 48 44 14 71 28 54 42 26 32 45 

Plesk 1 13 1 2 110 132 - 118 22 131 156 7 36 18 

Whmcs 5 20 3 5 74 97 12 111 17 51 176 15 83 5 

Average 11 16 7 18 51 60 16 69 16 50 75 17 34 19 

 

Robustness of Log Parsers 

Figures 9, 10, and 11 show the distribution of MLA, TA, and GA across datasets. Drain consistently achieved the highest 

median accuracy. Figure 12 shows the F1-score distribution, with Drain achieving the highest F1-score (around 1.0). 

Figures 13 to 16 show MLA across different log volumes. Drain maintained stable accuracy even as log volume increased. 

In the same way, we assess the performance of log parsers across different log volumes in terms of Template Accuracy, 

in summary, Drain outperforms the other log parsers in 4 out of 4 datasets included in these figures. 

        

 

Fig.9: Message level accuracy distribution of log 

parsers across different datasets 

 

Fig.10: Template accuracy distribution of log parsers 

across different datasets 
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Fig.11: Group accuracy distribution of log parsers 

across different datasets 

 

Fig.12: F1 score distribution of log parsers across 

different datasets 

 

Fig.13: Apache message level accuracy with 

different log volumes 

 

Fig.14: ECCMail message level accuracy with 

different log volumes 

 

Fig.15: Firewall message level accuracy 

with different log volumes 

 

Fig.16: Whmcs message level accuracy 

with different log volumes 
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Efficiency of Log Parsers 

Figures 17, 18, and 19 show the execution time of parsers across different log volumes. Drain recorded the lowest 

execution time and minimal changes in processing time, even with large log sizes. 

Findings and Results 

RQ1: Selecting the Most Effective Log Parsing Tool for NANS 

Drain is the most effective log parser for NANS, with high accuracy, robustness, and efficiency. However, it performed 

poorly on the IIS dataset, indicating room for improvement. 

RQ2: Adapting Existing Log Parsing Tools 

Fig.17: Execution time of log parsers on 

different Apache log volumes. 

 

Fig.18: Execution time of log parsers on 

different ECCMail log volumes. 

 

Fig.19: Execution time of log parsers on 

different Firewall log volumes. 
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To better serve NANS, log parsers need to support Arabic language parsing and improve the handling of log messages 

starting with digits. Integrating Natural Language Processing (NLP) techniques could enhance template identification. 

RQ3: Strengths, Weaknesses, and Underlying Principles 

• Strengths: Automation, efficiency, accuracy, scalability, and flexibility. 

• Weaknesses: Domain-specific limitations, false positives/negatives, complexity, and limited user interfaces. 

• Underlying Principles: Regular expressions, lexical analysis, and machine learning (ML). 

Conclusion 

The study distinguishes itself from previous research in several key ways. First, it employs a comprehensive set of six 

evaluation metrics—message-level accuracy, template accuracy, group accuracy, edit distance, F1 score, and execution 

time—ensuring a thorough and nuanced assessment of log parsing tools. This provides NANS administrators with a 

more informed basis for decision-making. Second, the use of real-world datasets sourced directly from NANS 

operations ensures that the evaluated tools are tested on data reflecting actual challenges faced by administrators, 

enhancing the relevance and generalizability of the findings. These datasets differ significantly from those used in prior 

research, contributing new insights to the field. Third, this study represents the first exploration of log parsing within 

NANS, paving the way for future research and potential improvements in log mining tasks and system efficiency. 

Finally, by identifying the most accurate tool, the study streamlines tool selection for NANS administrators, reducing 

their initial scope from fifteen tools to one and allowing them to focus their efforts on learning, utilizing, and improving 

this tool for broader applicability. 

Limitations 

This empirical study acknowledges several limitations that must be considered when interpreting and applying the 

results to real-world scenarios. First, the limited dataset diversity, with only seven datasets used due to access 

restrictions, may restrict the generalizability of findings across all log types and environments, despite representing 

various formats and sources. Second, the reliance on ground truth datasets, which were manually parsed and limited 

to 2,000 records per dataset, poses a constraint, as larger datasets are known to enhance evaluation accuracy, potentially 

affecting the results' applicability to real-world, larger-scale deployments. Third, the manual generation of ground truth 

datasets introduces the possibility of unintended bias, which could influence evaluation outcomes despite efforts to 

mitigate it. Additionally, the study focused on event information extraction without directly addressing the 

effectiveness of parsed logs for downstream tasks like anomaly detection and failure prediction, which may depend on 

other factors. Despite these limitations, the study provides valuable insights into the capabilities of the evaluated log-

parsing tools. By acknowledging these constraints and considering them in decision-making, administrators can better 

select tools suited to their specific needs and log types. The study also underscores the importance of addressing data 

diversity, ground truth generation methods, and downstream task requirements in future log-parsing research. 

Future Work 

This study establishes a foundation for advancing log parsing capabilities within NANS, identifying several promising 

directions for future work. First, expanding ground truth datasets by increasing their size and incorporating diverse log 

formats, sources, and complexities will enhance evaluation accuracy and generalizability, while automating ground 

truth generation can reduce manual effort. Second, developing a log parsing toolkit that integrates top-performing 

parsers, offers a user-friendly interface, and supports multiple export formats will provide NANS administrators with 

customizable, efficient tools. Third, enabling real-time parsing and monitoring through streaming integration, a 

graphical interface for visualization, and an alert system for anomaly detection will ensure proactive service availability. 

Additionally, exploring domain-specific parsers, advanced techniques like deep learning and natural language 

processing, and benchmarking emerging tools will further refine parsing accuracy and flexibility. By pursuing these 

avenues, NANS can significantly improve log analysis, anomaly detection, and overall service security and efficiency. 
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